Новости высоких технологий

А вот в Массачусетском технологическом институте (MIT) нет кафедры теологии, зато создали M-Blocks-кубики-роботы, способные самостоятельно перемещаться и самособираться в сложные структуры. Эти кубики, которые получили название M-Blocks, были разработаны и изготовлены Джоном Романишиным (John Romanishin), Даниэлой Рус (Daniela Rus) и Кайлом Джилпином (Kyle Gilpin). Каждый из этих кубиков представляет собой плотно упакованное высокотехнологичное устройство, внутри которого находится элемент питания, электронная схема управления и маховик, вращаемый миниатюрным электрическим двигателем, который может разгоняться до скорости в 20 тысяч оборотов в минуту. Когда маховик резко разгоняется или тормозит, импульс его движения передается всему кубу в целом и он может подпрыгнуть или покатиться в заданном направлении. Для взаимодействия друг с другом внутри роботов-кубиков находятся магниты, изменение полярности которым может привлечь кубики друг к другу или оттолкнуть их. Мы собираемся создать сотни роботов-кубов, которые, будучи беспорядочно разбросанными по полу помещения, будут в состоянии идентифицировать себя, обследовать окружающее пространство, обнаружить соседних роботов, начать двигаться и соединяться, образуя стол, стул, лестницу или другие предметы» – рассказывает Джон Романишин. Выполнение таких простых действий, естественно является только лишь первым шагом на пути реализации конечной цели, поставленной перед собой исследователями. Огромные количества таких роботов, выброшенные в месте, где произошло стихийное бедствие, авария или техногенная катастрофа, смогут самостоятельно выполнить операции по временному восстановлению и укреплению конструкций зданий, по наведению временных мостов, сформировать леса на строительных площадках и выполнить множество других подобных действий.

В последние годы был создан, по сути, новый класс материалов, в которых за счёт структурных особенностей удалось добиться отрицательного коэффициента преломления. По мнению большинства исследователей, это означает возможность преодоления дифракционного предела. Предположительно, это позволит получить суперлинзы – приборы, с помощью которых можно будет увидеть объекты, недоступные обычным оптическим устройствам. Наконец, уже удалось продемонстрировать невидимость в определённых диапазонах видимого света, а в перспективе речь идёт о достижении полной невидимости. И вот группа физиков под руководством Алексея Устинова из Технологического университета Карлсруэ (Германия) собрала набор из двадцати сверхпроводящих квантовых цепей, расположенных в микроволновом резонаторе. Алюминиевые схемы в ниобиевом резонаторе работали при 20 мК, что само по себе уже достижение. Чтобы добиться функционала от первого в мире метаматериала, действующего, так сказать, в «квантовом поле», учёные сначала минимизировали разницу между каждой квантовой цепью так, чтобы ток в любой из них отличался от тока в соседней менее чем на 5%. Но одно это не решило бы всех проблем. Квантовая цепь влияет на входящий фотон, взаимодействуя с ним. До сих пор все попытки разработки квантовых метаматериалов сводились к созданию цепей, расположенных последовательно, так что при взаимодействии со входящим фотоном они действовали как суперпозиция состояний всех цепей. Поэтому, если хоть одна из них работала не так, от метаматериала оставалось лишь его название. Группа г-на Устинова обошла препятствие, разместив квантовые цепи внутри микроволнового резонатора – камеры, по размеру соответствующей входящим микроволнам. Чтобы «вступить в контакт» с фотоном, каждая квантовая цепь нуждалась лишь во взаимодействии с самим резонатором и его ближайшими соседями. Разумеется, их нормальной работы оказалось добиться куда легче, чем для всего «ансамбля» цепей. Квантовый метаматериал заработал – по крайней мере частично. Взаимодействие с квантовыми цепями меняло фазу исходящего фотона, хотя и не очень сильно, но вполне заметно для последующего измерения. Кроме того, опыты показали, что вначале восемь цепей влияли на входящие фотоны совместно, но через какое-то время группа распалась на две по четыре цепи. Учитывая, что остальные условия эксперимента, включая температуру и параметры входящих фотонов, не менялись, возникает вопрос о причинах столь странного поведения квантовых цепей. Даже несмотря на неясности в поведении первого квантового метаматериала, нельзя не отметить, что он открывает новые, весьма интересные перспективы. На его основе можно создать как детекторы одиночных фотонов, так и весьма эффективные устройства по изучению квантового двойного лучепреломления, а также – кто знает – метаматериалы, которые окажутся эффективнее нынешних, неквантовых.

Возможность хранить и обрабатывать огромные объемы данных квантовым способом (в атомном масштабе) произведет революцию в вычислительной технике, позволяя проводить массивные расчеты. Компьютеры также смогут анализировать химические реакции, создавать новые лекарства и, что самое невероятное, проводить моделирование создания нашей Вселенной. Чтобы создать квантовый компьютер, ученые собрали электрически заряженные атомы (ионы) и управляли ими так, что они были способны формировать «атомные шоссе», из которые будут стоиться компьютерные сети. Первый квантовый компьютер небольшого размера, работающий на собранных вместе ионах, был уже создан с использованием лазеров для проведения расчетов внутри «квантового процессора», однако для создания полноценного квантового компьютера потребуется намного больше лазеров. Новое поколение квантовых компьютеров разработано с использованием микроволн, что проще в использовании, и должно приблизить создание крупномасштабных квантово-информационного процессора, работающего на ионах. Доктор Винфрид Гензингер (Winfried Hensinger)  и его сотрудники Саймон Вебстер (Simon Webster) и Сэб Вейд (Seb Weid), Ким Лейк (Kim Lake) и Джеймс МакЛафлин (James McLoughlin), из University of Susseх (Англия) создали эффективный и простой способ, чтобы оградить квантовый компьютер от внешних шумов, позволяя ему эффективно выполнять крупномасштабные операции. Применяя специальную комбинацию микроволн и радиочастотных полей, команда смогла изменить атомы так, чтобы они стали более устойчивыми к внешним помехам.                                                                                                                                                                                                                                      Доктор Гензингер отмечает, что: «В то время как создание крупномасштабные квантовые компьютеры может быть невозможно еще 10-30 лет, нам все равно решить еще одну большую проблему, и мы очень рады возможностям, которые вытекают из этого открытия. Перспективы применения квантовых компьютеров даже не известны. Когда обычные компьютеры были впервые изобретены, никто не ожидал, как они изменят общество. Таким же образом, в силу невероятной мощности квантовых компьютеров, трудно сделать прогнозы, и мы можем только представить себе, как они изменят нашу жизнь».

Жолт Варга (Zsolt Varga) и его исследовательская группа из немецкого Института Трансурановых элементов являются специалистами по ядерной безопасности и экспертами по разработке инструментов для анализа ядерного материала неизвестного происхождения. Совместно с исследователями из Корейского Института по Исследованию Атомной Энергии исследователи из группы Варгы открыли новый маркер для определения происхождения концентрата урановой руды. Этот маркер определяется по соотношению изотопов 34S/32S, которое можно установить с помощью экстракции сульфата с помощью ионного обмена с последующим анализом методом масс-спектрометрии с индуктивно связанной плазмой [inductively coupled plasma mass spectrometry (ICP-MS)]. Варга поясняет, что необходимость анализа ядерного сырья и концентрата ядерного сырья важна для того, чтобы иметь возможность определить источник этого материала, чтобы убедиться в том, что этот материал не будет применяться для создания оружия массового поражения; в ходе работы была продемонстрирована хорошая способность новой методики демонстрировать хорошую воспроизводимость и предсказательную способность в анализе концентратов урановой руды. Эта работа может стать эффективным методом для определения происхождения урановой руды, так как сера является очень хорошим выбором, так как изотопный состав серы очень сильно зависит от того, в каком уголке Земли была извлечена та или иная урановая руда.

Исследовательская группа из Oxford University (Великобритания) предложила новый способ создания тонкопленочных солнечных элементов, эффективность преобразования энергии в которых превышает 15%. Устройства создаются на основе материала, известного как перовскит. Солнечные ячейки имеют простую архитектуру и легко могут воспроизводиться в коммерческих масштабах, так как процесс осаждения из парообразного состояния, используемый для их производства, по своей простоте вполне может конкурировать с традиционными методами обработки материалов, применяемыми для создания солнечных элементов. Исследователи продемонстрировали, что перовскиты не только поглощают свет, но также могут обеспечивать транспорт электронов и дырок проводимости. Это значит, что использовавшаяся ранее сложная наноструктура не является необходимой для создания сенсибилизированных красителем солнечных элементов. В новом предложенном ими устройстве поглощающий свет слой перовскита просто зажат между чувствительных к электронам и дыркам электродов. По сути, своей простотой установка во многом напоминает обычные плоские контактные солнечные батареи. При этом устройство обеспечивает высокую эффективность преобразования солнечной энергии в электричество (до 15,4%), несмотря на толщину всего в 330 нм. Стоит отметить, что устройство также создает разность потенциалов в 1,07 В (что более чем в 2 раза превышает разность потенциалов, создаваемую кремниевыми пластинами 0,15 мм толщиной). Это означает, что для создания солнечных батарей с отличными характеристиками необходимо совсем немного перовскита.

Устройства на основе перовскита вполне могут производиться с помощью тех же процессов, что сейчас применяются для создания коммерческих солнечных элементов, в том числе, на основе кремния, так как они поглощают свет в другой спектральной области, нежели кремний, солнечные элементы на базе перовскита и кремния могут удачно дополнять друг друга. Причем, слой кремния может размещаться под слоем перовскита (поскольку последний не поглощает требуемый диапазон излучения). Это позволит создавать устройства, эффективность которых превышает возможности солнечных элементов и из кремния, и из перовскита по отдельности.

Как пример создания новых технологий, которые приведут к проблемам в России, я бы привел ситуацию с производством титана, который обладает уникальными свойствами и необходим для аэрокосмического и атомного подводного судостроения. На один только Boeing -777 уходит 59 т титана. Более того, в силу его твердости и сложности обработки на 1 кг веса конечного продукта приходится потратить 11кг собственно металла. В итоге цена материала (и изделий из него) такова, что США и страны ЕС вынуждены закупать титан в России (корпорация « ВСМПО-АВИСМА» обеспечивает 40% металла для Boeing, 60% – для Airbus, 100% – для Embraer). Нельзя сказать, что это кому-то нравится (за пределами «ВСМПО-АВИСМА»): титан не нефть, а strategic metal, как его определяют исследователи из Западного резервного университета (США).  Ситуация, когда в те же Штаты ключевой металл как раз тех марок, что применяются также в производстве военной техники, поставляется из-за рубежа, выглядит двусмысленно. Новый метод, разработку которого финансирует Министерство энергетики США, выглядит весьма привлекательно.  «В случае нашего успеха цены на титан упадут на 60%», – заявляет Рохан Аколькар (Rohan Akolkar), ведущий исследователь проекта. Учёные отрабатывают прямое извлечение титана электролизом из расплавленных солей титана при помощи специализированного электрохимического реактора, демонстрационная версия которого сейчас строится в Западном резервном университете. «Значительная часть стоимости получения титана посредством обычных (не электролитических) методов приходится на обработку расходуемого восстанавливающего агента, обычно – магния. В нашем прямом электролитическом процессе магний не нужен, – подчёркивает г-н Аколькар. – Это уменьшает стоимость, снижает потребление энергии и упрощает весь процесс». Заметим, что магний и сам по себе весьма дорог и энергоёмок. По некоторым оценкам, до половины стоимости исходного титанового полуфабриката приходится на магний, и его устранение из техпроцесса, несомненно, снизит цены на конечные изделия.
Важно и то, что титан, получаемый по новому процессу, должен быть чище обычного, а потому содержать меньше дефектов. Иначе говоря, его механические параметры будут более высокими.

Наконец, при заметном снижении цен обратить взоры на титан могут производители электромобилей и некоторых гибридов. Tesla Model S и ей подобные и так сделаны из алюминиевых сплавов, ведь стоимость материала для электромобилей, с их ограниченным запасом энергии на борту, намного менее важна, чем вес, который и алюминий, и тем более титановые сплавы позволяют радикально сбросить. Низкая восприимчивость последних к коррозии и высоким температурам тоже способны привлечь автоотрасль, в последнее время развивающуюся очень быстрыми темпами.

Запись опубликована в рубрике Записки полупостороннего. Добавьте в закладки постоянную ссылку.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>