Благодаря деятельности Роснано, говорить о нанотехнологиях становится дурным тоном, но являясь многолетним специалистом в этой области, искренне считаю это направление одним из критических направлений науки и техники. Так, Иран входит в двадцатку стран, где нанотехнологии развиваются стремительными темпами. Как заявляет Саид Саркар …, начальник штаба нанотехнологий в администрации президента Ирана, такой результат планировался к 2015 году. Однако Иран перевыполнил этот план на несколько лет и продолжает развивать научно-промышленное производство. Уже сегодня здесь активно действуют и появляются новые компании, которые занимаются разработками в сфере нанотехнологий. Сейчас в стране производится 4% научных разработок от общего мирового показателя. Частью стратегического плана Ирана по развитию нанотехнологий является организация разных специальностей в этой области во многих университетах страны. В 29 высших учебных заведениях Ирана есть магистратуры в направлении нанотехнологий, а в 14 ВУЗах по этой специальности студентам присуждаются докторские степени. По словам Саида Саркара, сегодня в Иране нанотехнологии применяются в таких сферах, как строительство, экономика, наноматериалы, здравоохранение, народное хозяйство, охрана окружающей среды, текстильная промышленность, автомобилестроение и другие. Одной из самых важных областей использования нанотехнологий является медицина, а именно – лечение разных видов раковых заболеваний.
А пока Россия стремится как-то поучаствовать в общемировом технологическом инновационном процессе, ученые многих стран создают все новые и прорывные нанотехнологии. Так, специалисты Корнельского университета Уильям Дичтел (William Dichtel) и Деепти Гопалакришан (Deepti Gopalakrishnan) разработали оригинальный способ поиска взрывчатых веществ – быстрый, результативный и не очень затратный. В его основе лежит новая технология – светящийся полимер, который в буквальном смысле сигнализирует о наличии или отсутствии взрывчатки. Работает новый детектор просто: если поблизости нет ничего из известных сегодня взрывчатых веществ, то полимер, имеющий необычную пересеченную структуру и с помощью нее поглощающий свет, работает в качестве обычного проводника энергии, которую выпускает в виде все того же света. Иными словами, когда все спокойно, этот полимер постоянно светится, но если взрывчатка все же найдена, свечение пропадает. Наглядно, просто и понятно, и причина отсутствия свечения кроется во все той же поглощенной энергии: вместо света она вырывается на свободу в виде тепла.
Около пяти лет назад Управление перспективных исследовательских программ Пентагона DARPA начало выполнение программы, в рамках которого было необходимо создать миниатюрную вакуумную систему, вакуумный насос, занимающий объем менее одного кубического сантиметра и потребляющей менее четверти Ватта электрической энергии. На прошлой неделе представители DARPA объявили об успешном завершении данной программы, с заданием которой успешно справились исследователи из Мичиганского университета, Массачусетского технологического института и компании Honeywell International. Каждый из участников программы продемонстрировал свое собственное устройство, размеры которого не превышают размеры маленькой монеты, и которые могут стать основой миниатюрных химических датчиков следующего поколения. Конечной целью проекта DARPA, который был начат в 2008 году, является создание малогабаритного химического датчика, который способен определять наличие в воздухе очень маленьких концентраций различных химических соединений. Такая способность новых датчиков позволит применять их не только для обнаружения скрытого химического оружия, потенциальная область применения таких датчиков чрезвычайно широка, особенно в промышленности.
Химический датчик основан на принципах масс- спектроскопии, способной идентифицировать химические соединения по изменению массы при изменениях глубины вакуума. Эти устройства могут регистрировать чрезвычайно слабые концентрации химических веществ, для уверенной идентификации им требуется всего несколько молекул. Но из-за технических ограничений, связанных с особенностями вакуумной техники, вакуумные камеры масс-спектрометрических анализаторов были намного больше, чем требуется, и такие устройства нельзя было сделать переносными и портативными. Вакуумная система, разработанная в Мичиганском университете, имеет шестиугольную форму, внутри которой существует достаточно сложная сеть из миниатюрных электрических насосов, клапанов и полостей. Большой глубины вакуума с помощью такого миниатюрного вакуумного насоса достичь не получится, но и той глубины, которую он может обеспечить, достаточно для работы крошечного масс-спектрометра, который может без затруднений установлен на беспилотном летательном аппарате, давая военным в руки быстрый, малогабаритный, маневренный и точный инструмент химической разведки.
Тошики Тамура (Toshiki Tamura) из Государственного института агробиологических наук (Япония) и его коллеги встроили гены, запускающие производство флуоресцентных молекул, в геномы шелкопрядов в тех областях, которые отвечают за синтез фиброина.
На сегодняшний день исследователям удалось вывести 20000 трансгенных шелкопрядов. Полученный от них шелк способен под люминесцентным освещением принимать яркие тона. Подобная способность шелка по утверждениям ученых будет держаться на протяжении двух лет. Японский дизайнер Юми Катсура уже сделал из флуоресцентного шелка несколько предметов одежды, включая подвенечное платье. В видимом свете ткань имеет слабый оттенок, своих свойств она не теряет более двух лет и по прочности лишь немного уступает обычному шелку.
Исследователи из лаборатории Беркли, работающие в Объединённом центре искусственного фотосинтеза (Joint Center for Artificial Photosynthesis, JCAP), разработали первый полностью интегрированный микрожидкостный прибор для оценки и оптимизации на микроскопическом уровне систем электрохимического преобразования под действием солнечного света. Микрожидкостный прибор позволит учёным испытать и оптимизировать системы искусственного фотосинтеза на примере небольших устройств. Впоследствии полученные экспериментальные данные могут быть применены для создания крупномасштабных установок.
Специалисты из Немецкого космического центра (DLR) разработали новый тип малогабаритного двигателя-экстендера для гибридного автомобиля, который построен на базе линейного бесклапанного двигателя внутреннего сгорания и который может работать практически на любом виде топлива. Линейный генератор со свободными поршнями состоит из камеры сгорания, двух поршней, линейных электрогенераторов и возвратных газовых пружин. Двигатель-экстендер работает почти также, как работают обычные двигатели, за счет воспламенения топливно-воздушной смеси в камере сгорания, за счет чего производится движение поршней. Однако, вместо того, чтобы за счет коленчатого вала осуществлять преобразование линейного перемещения поршня во вращательное движение вала, устройство преобразует кинетическую энергию движения поршней непосредственно в электрическую энергию. Двигатель-экстендер работает с частотой 40–50 Гц и вырабатывает до 35 кВт электрической энергии. «Принципы построения линейных двигателей внутреннего сгорания известны инженерам уже достаточно давно» – рассказывает Ульрих Вагнер (Ulrich Wagner), директор Отдела энергетики и транспорта агентства DLR, – «Но за счет использования газовых пружин оригинальной конструкции наши инженеры добились потрясающей стабильности работы такого двигателя. А за счет использования мощного электронного блока динамического управления нам удается с высокой точностью регулировать работу всех компонентов двигателя, заставляя их взаимодействовать как единое целое». Система электронного управления, созданная инженерами DLR, управляет движение поршней линейного двигателя с точностью одной десятой доли миллиметра, определяя колебания давления в ходе процесса сгорания топлива и делая компенсацию этих колебаний. Такой механизм также позволяет гибко регулировать степень сжатия, скорость движения поршней и рабочий объем камеры сгорания. Такие возможности позволяют использовать в качестве топлива бензин, дизельное топливо, природный газ, биотопливо, этанол и водород. Небольшие размеры нового генератора позволяют без особого труда установить его на любой из серийно выпускаемых сейчас гибридных автомобилей для того, чтобы расширить дополнительную дальность его поездки минимум на 600 километров, не увеличивая, при этом, веса автомобиля. Первый опытный образец нового линейного генератора был недавно продемонстрирован на испытательном стенде института DLR Institute of Vehicle Concepts в Штутгарте. А сейчас, специалисты DLR совместно с компанией Universal Motor Corporation GmbH работают над созданием первых промышленных образцов, испытания которых будут проводиться на гибридных автомобилях различных марок.
3D печать – это широко применяемое цифровое производство разнообразных пластиковых и металлических изделий. Хотя эта технология сама по себе уже может вызвать производственную революцию, гораздо более поразительно развитие биопринтеров. Несколько экспериментальных биопринтеров уже было создано. Например, в 2002 году профессор Макото Накамура увидел, что капли чернил в стандартном струйном принтере имеют примерно такой же размер, как клетки человека. После этого он адаптировал технологии и в 2008 году создал рабочую модель биопринтера, которая осуществляет печать биотрубочек, похожих на кровеносные сосуды. Профессор Накамура надеется, что со временем можно будет буквально распечатывать внутренние органы, готовые к трансплантации. Другим пионером в области биопечати является компания Organovo, которая была создана исследовательской группой под руководством профессора Габора Форгача (Gabor Forgacs) из университета Миссури. С марта 2008 года Organovo задалась целью создать технологии биопечати функционирующих кровеносных сосудов и сердечной ткани с помощью клеток, полученных из тканей цыпленка. Эта работа опирается на прототип биопринтера с тремя печатающими головками. Первые две головки выводят кардио- и эндотелиальные клетки, в то время как третья выделяет коллагеновую основу – так называемую “био-бумагу” – для поддержки клеток во время печати. Как продемонстрировала компания Organovo, при использовании процесса биопечати не обязательно печатать орган во всех деталях. Достаточно правильно расположить соответствующие клетки в ряды, а природа сама завершит работу. Этот процесс красноречиво свидетельствует о том, что клетки, содержащиеся в биочернильных сфероидах способны перестраиваться после печати. Например, экспериментальные сосуды были напечатаны с помощью биопринтера с использованием биочернильных сфероидов и состояли из совокупности тканей эндотелия, гладких мышц и фибробластов. После того, как они были выстроены (уложены в слои) головкой биопринтера, эндотелиальные клетки мигрировали внутрь созданных кровеносных сосудов, клетки гладкой мускулатуры двигались в середину, а фибробласты мигрировали наружу без дополнительного вмешательства. Клетки более сложных тканей и органов, например, капилляров и других внутренних структур, после печати на биопринтере также самостоятельно принимают естественное положение. Этот процесс может показаться почти волшебным. Однако, как объясняет профессор Габор Форгач (Gabor Forgacs), он ничем не отличается от процесса, который происходит в клетках эмбриона, которые “знают”, как правильно расположиться и сформировать сложные органы. Природа развила эту удивительную способность за миллионы лет. Соответствующие типы клеток, оказавшись в нужных местах, каким-то образом знают, что им делать.
В декабре 2010 года компания Organovo создала при помощи биопринтера первые кровеносные сосуды с использованием клеток, полученных от одного донора. Компания также успешно имплантировала нервы, созданные при помощи биопринтера, крысам, а эксперименты по пересадке созданных таким методом тканей человеку запланированы на 2015 год. Тем не менее, ожидается, что первое коммерческое применение биопринтеров будет заключаться в производстве простых человеческих структурных тканей для токсикологических испытаний. Это позволит ученым тестировать лекарства на моделях печени и других органах, созданных на биопринтере, тем самым снижая потребность в экспериментах на животных. Organovo ожидает, что первым искусственно созданным человеческим органом станет почка, так как при трансплантации эти органы наиболее востребованы. Первые почки, созданные на биопринтере, не обязательно должны выглядеть и функционировать так же, как их природные аналоги. Главное, чтобы они очищали кровь от продуктов обмена.
Научный коллектив под руководством Джереми Мао в лаборатории тканевой инженерии и регенеративной медицины Колумбийского университета (Tissue Engineering and Regenerative Medicine Lab) работает над применением биопринтеров для замены зубов и костей. В настоящее время экспериментально создана решетчатая 3D-конструкция в форме резца и имплантирована в челюстную кость крысы. Эта структура состоит из микроканалов, которые наполнены веществами, стимулирующими развитие стволовых клеток. Всего через девять недель после имплантации они вызвали рост периодонтальной связки и образование альвеолярного отростка. Со временем эти исследования могут дать людям возможность иметь новые зубы, созданные на биопринтере, или получить их путем стимуляции организма к образованию собственных новых зубов. В настоящее время команда исследователей биопечати под руководством Энтони Алата (Anthony Alata) в Wake Forrest School of Medicine разработала принтер, создающий кожу. В начальных экспериментах они взяли 3D-сканы тестовых травм, нанесенных мышам, и использовали эти данные для управления головкой биопринтера, которая распыляет клетки кожи, коагулянты и коллаген на рану. Результаты этого эксперимента оказались также весьма многообещающими: заживление ран проходило всего за две – три недели (примерно пять-шесть недель – в контрольной группе). Частичное финансирование проекта создания кожи с помощью биопринтера осуществляется американскими военными, которые добиваются развития биопечати in situ, чтобы лечить раны прямо в боевых условиях. В настоящее время работа все еще находится в фазе доклинических испытаний. Алата развивает технологии, экспериментируя на свиньях. Тем не менее, испытания на людях, пострадавших от ожогов, могут быть осуществлены в течение ближайших пяти лет.
Американским физикам и инженерам удалось разработать технологию трехмерной печати литиевых элементов питания. Размер полученных батарей составляет около миллиметра, а главной сферой применения разработчики называют вживляемые устройства. При этом подчеркивается, что электроды новой батареи получаются тоньше человеческого волоса, в то время как процесс печати полностью автоматизирован и использует уже существующие модели трехмерных принтеров. Основной проблемой, которую пришлось разрешить ученым, являлся подбор «чернил», материала, используемого принтером. Исследователям удалось подобрать вещество, которое сочетает высокую электрическую проводимость со способностью мгновенно затвердевать при контакте с воздухом и сохраняться жидким внутри принтера. Кроме того, разработчикам печатной микробатареи пришлось подобрать состав, содержащий оксид лития. После того, как принтер сформировал электроды и добавил оксид лития (его в печатный состав пришлось внести в виде наночастиц), батарея закрывалась корпусом и заливалась электролитом; все изделие в сборе сопоставимо по размеру с песчинкой. Это позволяет обеспечить долговременную работу вживляемым приборам для мониторинга крови и других параметров в организме пациента.
ГРАФЕН
Расширяются постоянно и работы по применению графена для различных практических целей. Как показали в своей последней работе ученые из США и Кореи, графен может использоваться для создания высокочувствительных газовых и химических датчиков. Правда, возможно это, только если углеродный материал содержит дефекты кристаллической решетки. Стоит отметить, что в рамках своих исследований ученые обнаружили один интересный факт: оказалось, что графен, не содержащий дефектов, ведет себя точно так же, как «дефектный», если он помещен на подложку с внешними дефектами. В предыдущей работе команда ученых из University of Illinois (США) показала, что на основе графена можно построить датчики, фиксирующие даже одну молекулу газа, но только при условии, что этот материал содержит внутренние дефекты. Таким образом, обнаруженная теперь совместно с коллегами из Korea Research Institute of Standards and Science и Seoul National University (Корея) возможность строить такие электронные устройства, как химические полевые транзисторы или высокочувствительные газовые анализаторы, на «чистом» графене стала неожиданностью.
Открыта еще одна удивительная способность графена. Форма углерода толщиной в атом может выступить в качестве посредника, который позволяет вертикальным нанотрубкам расти практически на любой поверхности. Включая алмазы. Структура, состоящая из алмазной пленки, графена и нанотрубки, стала результатом нового исследования, проведенного учеными из университета Райса и НИИ Хонды США, под руководством Пулинела Аджаняна. Графен и металлические нанотрубки являются хорошим проводником, а в сочетании с металлическими основаниями они могут использоваться, в том числе, в передовой электронике. Большинство фотографирующих, как правило, не довольны чувствительностью датчика своей камеры, когда дело касается съемки в условиях недостаточной освещенности. Но в недалеком будущем это может в корне измениться благодаря работе группы ученых из Сингапура, которые разрабатывают новую технологию производства светочувствительных датчиков для камер, основой которых является графен, материал, представляющий собой кристаллическую структуру из атомов углерода, толщиной всего в один атом. Использование нового датчика, предположительно, сделает будущие камеры в 1000 раз более чувствительными к свету, а количество используемой датчиком энергии снизится при этом минимум в 10 раз.
Графеновые датчики имеют высокую светочувствительность благодаря тому, что они более эффективно улавливают в свою ловушку фотоны света, а высокая электрическая проводимость графена позволяет снять с датчика и обработать сигналы намного более низкого уровня, нежели позволяют это сделать обычные полупроводниковые датчики. Новые графеновые датчики могут использоваться не только в бытовых фото- и видеокамера. Эти датчики имеют высокую чувствительность не только в диапазоне видимого света, но и в инфракрасном также. Поэтому такие датчики можно будет весьма эффективно применять в камерах, контролирующих движение на дорогах, инфракрасных камерах для приборов ночного видения и в камерах спутников, делающих высококачественные снимки земной поверхности. Согласно заявлению профессора Ван Киджи (Wang Qijie) из Технологического университета Нанянга (Nanyang Technological University), графеновые датчики для камер разрабатываются таким образом, что их изготовление будет возможно с помощью существующих технологических производственных методов. Это означает, что новые датчики, на основе наноструктур из графена, легко и без технологических затруднений заменят CCD-датчики современных камер.
Первооткрыватель графена Андрей Гейм на вопрос о его промышленном будущем отвечает, что «обычно требуется 40 лет, чтобы новый материал из академической лаборатории превратился в коммерческий продукт. Графену только восемь лет, люди стали интересоваться графеном с 2007г., и уже несколько лет он в индустриальных лабораториях у того же Samsung, в куче японских лабораторий. За последние два года все медленно начало рассеиваться в различные предложения. Я уже видел мобильный телефон Lenovo c тач-экраном, сделанным из графена: ничем не отличается от обычного. В настоящий момент это тестовый экземпляр. Есть надежда, что он будет дешевле нынешних смартфонов. Есть большая надежда, что боковая поверхность, которая никак не используется в современных мобильных телефонах, тоже станет тачскрином. Японская компания Sony делает 100-метровые рулоны графена. Я знаю компанию, которая называется Blue stone, у них та же задача: десятикилометровые рулоны графена производить на продажу. Изначальная цель — мобильные телефоны. Все выглядит очень оптимистично и, по сравнению с другими материалами, происходит со скоростью света. У графена много титулов. Похоже, что он заслуживает титул материала, который быстрее других перешел из науки в настоящее производство. Остается подождать несколько лет, чтобы увидеть этот материал в коммерческой продукции. Кто знает, что может случиться, когда имеется абсолютно новый класс материалов, не имеющих толщины, их толщина — один атомный слой, меньше невозможно представить. Теперь мы имеем новый класс материалов, которые мы можем по желанию складывать как конструктор «Лего». Ты можешь конструировать все, что можешь представить».
Специалистам из японской компании «Спайбер» /Spiber Inc/ первым в мире удалось наладить технологию массового производства так называемого паучьего шелка — текстильного волокна, которое, как считается, является прочнее стали и эластичнее нейлона. Об этом говорится в опубликованном сегодня заявлении компании. Ранее производители текстиля по всему миру предпринимали неоднократные попытки воссоздать вид волокна, из которого паукообразные плетут свою паутину, но с экономической точки зрения это всегда выходило крайне нерентабельным. Однако, по заявлению компании «Спайбер», ей удалось разработать технологию, позволяющую в сжатые сроки создавать большое количество этого уникального волокна без серьезных финансовых затрат. Также японские специалисты смогли разработать метод, благодаря которому «паучий шелк» можно преобразовывать в синтетическую пряжу без использования дорогостоящих и токсичных химических препаратов. Продукция, изготовленная из такого чудо-волокна, по заверениям компании, чье название созвучно с английским словом «паук» /спайдер — spider/, будет отличаться невероятной прочностью, долговечностью и эластичностью.
Ученые из Western University при помощи канадского синхротрона CLS нашли способ резко снизить цену топливных ячеек. Это может открыть дорогу в массовое производство очень перспективному источнику энергии, который пригодится на всех видах транспорта, в быту и на производстве. Суть новой методики заключается в «разбивке» платинового катализатора на наночастицы и даже отдельные атомы, способные ускорять химические реакции. Новая технология решает проблему перерасхода платины. Новый метод осаждения атомных слоев (ALD) позволяет наносить именно столько катализатора сколько нужно – хоть один атом для использования в наномашинах. Это резко снижает цену топливной ячейки без потери ее производительности, которая, к слову, итак уже достаточно высока для коммерческого использования. Разработать новую технологию осаждения атомных слоев удалось с помощью синхротронного излучения установки CLS и электронного микроскопа со сверхвысоким разрешением. Благодаря этому ученые смогли отследить химические свойства платины и найти оптимальный способ «разобрать» платину на мельчайшие из возможных частей, способных поддерживать каталитическую реакцию.